Received: May 8, 1987; accepted: September 27, 1987

UNIT CELL DIMENSIONS OF SOME OXOFLUOROMETALLATES OF TRANSITION METALS

J.K. GHOSH * and G. GHOSH

Department Chemistry, Indian Institute of Technology New Delhi-110 016 (India)

SUMMARY

Unit cell dimensions of seven oxofluorometallates of transition metals were investigated by powder X-ray diffraction method. The compounds $K_3NbO_2F_4$ and $K_3TaO_2F_4$ were found to be isomorphous with cubic (FCC) structure and having lattice parameters 8.885 and 8.942 Å respectively. Similarly, the compounds K_2NbOF_5 (a = 8.367 Å, c = 13.038 Å) and K_2TaOF_5 (a = 8.463 Å, c = 13.139 Å) were also found to be isomorphous with a tetragonal structure. The compound $K_3Zr_2O_2F_7$ (a = 9.367 Å) was found to possess a cubic (FCC) structure. Both $K_2V_2O_5F_2$ (a = 6.739 Å, c = 10.635 Å) and K_2VO_3F (a = 5.984 Å, c = 10.914 Å) have a hexagonal structure.

INTRODUCTION

It has been observed that thermal decomposition of solid fluoroperoxo compounds leads to the formation of oxidefluorides and oxofluorometallates of transition metal [1,2] Transition metal fluorides, oxidefluorides and oxofluorometallates find use as solid state materials with vast technical applications [3-7]. 0022-1139/88/\$3.50 © Elsevier Sequoia/Printed in The Netherlands Many of the chemical and physical properties are directly related to the transition metals ions in a particular anion environment predicted on the basis of crystal structure [8].

This communication reports unit cell dimensions of seven oxofluorometallates of transition metals.

EXPERIMENTAL

The oxofluorometallates $K_3MO_2F_4$ (M = Nb, Ta); $K_3^2r_2O_3F_7$; $K_2V_2O_5F_2$ and K_2VO_3F have been prepared by heating the corresponding fluoroperoxo metallates in a muffle furnace at the temperature corresponding to the flat plateau in the thermograms and characterized by the standard methods, reported earlier [1]. Powder photographs were obtained on a Phillips-1130, X-ray generator with a Debye Scherrer Camera (diameter 114.6 mm) using CuK_{4C} radiation.

RESULTS

The lattice constants derived using Cohen's leastsquare method are listed below (see Table).

The compounds $K_3Nb0_2F_4$ and $K_3Ta0_2F_4$ were found to be isomorphous with a FCC structure. Similarly, the compounds K_2Nb0F_5 and K_2Ta0F_5 were also found be isomorphous and all the X-ray lines could be indexed on the basis of a tetragonal structure. All the diffraction lines in the compounds $K_2V_2O_5F_2$ and $K_2VO_3F_5$, were indexable on the basis of a hexagonal structure and, in the case of $K_3Zr_2O_2F_7$, based on a FCC Lattice.

Compound	Structure	°a (A)	。C (Å)	c/a
K ₃ Zr ₂ ⁰ 2 ^F 7	Cubic	9.367	-	
K ₂ V ₂ O ₅ F ₂	Hexagonal	6 •7 39	10.635	1.578
ĸ₂vo ₃ f	Hexagonal	5.984	10,914	1.824
K2NDOF5	Tetragonal	8 . 367	13,038	1.558
K ₂ TaOF5	Tetragonal	8,463	13 .13 9	1.552
K3NDO2F4	Cubic	8,885		-
K ₃ TaO ₂ F4	Cubic	8,942	-	-

ACKNOWLEDGEMENT

The authors thank Prof. G.V. Jere for his encouragement.

REFERENCES

1	J.K. Ghosh and G.V. Jere, J. Fluorine Chem.,
	<u>35</u> (1987) 669-676.
2	J.K. Ghosh and G.V. Jere, Proc. Inter. Conf.
	"Centenary of the discovery of fluorine",
	Paris (France) Aug. 25-29, 1986.
3	A. Tressaud and J.M. Dance, 'Advances in Inorganic
·	Chemistry and Radiochemistry; Vol. 20, p. 133,
	Academic Press, New York (1977).
4	H. Arend, P. Muralt, S. Plesko and D. Altermatt,
	Ferroelectrics, <u>24</u> (1980) 297.

5 M. Robinson, R. C. Pastor, R.R. Turk, D.P. Devor, M. Braunstein and R. Braunstein, Mat. Res. Bull., <u>15</u> (1980) 735.

186

- 6 A. Simon and R. Ravez, Ferroelectrics, <u>24</u> (1980) 305.
- 7 B. Khazai, K. Dwight, E. Kostiner and A. Wold, Inorg. Chem., <u>19</u> (1980) 1670.
- B.L. Chamberland, in 'Inorganic Solid Fluorides'
 edited by P. Hagenmuller, Academic Press, Orlando,
 Florida (1985), p. 205-258.